
(C)John F. Rider

KAAR ENGINEERING CO.

BAND - SWITCH SHOWN
AT 3RD POSITION
BANDC
$5-16 \mathrm{MC}$.

©John F. Rider

## 1. DEGGRIPRCI

 pirjoge communications recolver coverine a requency range frem scc ac to 42 KC . the most cemmenly used railic cormaniceticas bande. This reeetver provides a high degree of elelectivity and aenaltivity which bhould provide reception under the most difflenit condtione.
 1tE built-in A0 power supply An auxiliary 24 " pover cable terminating in a external poiver pack.
1.21 The buitt-in pover supply grovidel operation from 40-60 eycle to power at $100,120,15 C$, 21C and 230 volts. a ariteh is provided for selecting any one of these veltagea na necoseary. The receiver win elso, operaks, atisfacterily urder aubatantial overvoltage or undervoltage concitions; and matiafactory operation can be expected on any vollage betwoan
asc volta.
1.22 Dyeration from a 6 volt battery is provided by removing the pewar plus grom tis socket and tnserting it into an external power supply capabla e curnithing $46 C$ volte at $65 \% A$ and $6 \nabla_{\text {. }}$ De fer the beaters. By naking ainer cirouit change undernesth the chasais, the high voltage pove -quirement can be reduced to $230-250$ voltf at 65 his.
 reccmandod for goneral ue. Jhoh jarger mpeakera to provide better tone quality reccrmandeq for goneral ues.
 provided for feeding the output into $50 C$ ohm ine.
 paitl of relay rack mounting dimentiont. It is hovaed in an is gage iteel cabinat


The nodel $235 \%$ sponker cabinet ig $\theta^{n}$ high (excluding handie). $10^{n}$ wide and $6^{\prime \prime}$ deep. trimi and knoti.


| Band 4 | 500 XC | to $1600 \times 0$ |
| :---: | :---: | :---: |
| Jand $B$ | 1600 XC | to 5CCO KC |
| Band 0 | 5 ho |  |
| maná $D$ | 16 LC | 6.42 KC |

The fraquencies are callbrated directly on the main dial. The Vjrnizh dial in tine center provide meank for fine tunine adjustriente and accurate logeing. one complate rotalion the 100 to 1.

## 6 TJBE COHPTKYANTS:

| H-1 6SE709 | Trund Ru7. Aupli |
| :---: | :---: |
| $\mathrm{Y}-2 \mathrm{6K8}$ | First Det. Osc. |
| 7-3 6skron |  |
| $6{ }^{6} 6$ | sutometic yol |

7-4 6E6
t.5 68gers ton dol. Aplifle second Dot. and Squelcb control.

Qlase "GN" tubes or even "G" tubes can be used if the motal tubes indicated abore are not available. Netal tubes can be mbitituted in all cases where clags tube are indicated, Hoverer, is such eubrititutions are made for V-1, V-a or V-3, it is gulte probeble that the recetver vould have to be ro-aligned, particularly on the higher frequency bands.
.7 gIRCOLS:
1.71 The circuit is a standard auperbutrodyne with a high degree of atability. Perpatbility tuned intermediate frequancy tranaforaers and ceramic trimine condensers across the $R_{0} F$. coile are incorporated to aseure parmonancy of adjustmont.


 allences the receiver axcopt whan atition is actually being received. This feature can also be uned as a between-atation guiating device preventia the roar of etatic between stations whan tuning from one to another.
 produced by gyroline engine lealtion aysteme or other electrical equipment ncluding cralnary static, that may exceed the level of the elgual being received.
 compoient part, the general performance is excellent.
 consitivity of the recerver vill be agproximately between $\alpha$ and 5 micrevolta over the range 500 EC to 16 mig and betwon 3 and 15 microvolits in the 16 to 42 NE range.
1.82 Shuchivitas the averago selectifity if epproxtmately as followet

Eatiot Input Voltage orf

- Kilacycles

Rescrance to Foltiere at fertonance
7 IK
$10(20 \mathrm{DB})$
$\begin{array}{cc}100 & (40 \mathrm{Dg}) \\ 1000 & (60 \mathrm{Da})\end{array}$
14 KC
25 KC
 100 and 2500 cyclea. The power output is approximately 2 watte $\mathrm{uth}^{2} \mathrm{t}$ 300 and 8500 cyclen. The power outgut is a

3.1 A tadio receiver is onity as good as its instaliation, Beception obvioumly will
 antenna; it would be noder proper conditions. Generaily poeaking the rif-23kr receiver ghould be installed accordine to good and accoptable practice. A filier is grovided to the 10 lise to belp minimise noise from that cource. The automatic noise limiter vill help reduce nolse entering by why of thengrona. mo vcitage regalating noon latps are in the quelilater roitage waply circuit to ainimise effect of voltage fluatuations. the recelver hat deen miatwro-proofed anding parts on the under side of the obasais have boen eprayod
 ensential for satisfactory reception of weak stenais.
2.21 The antema input cirouit of the ke-23aT provides for the use of a karcont or doublet antenna. The harconit type is uaunily reconmended for ordinary reception and should prove satiefactory th moat instances. It consists of
 Insilators ae high as posaible. The ever-all length ia int erittcal and may be scme 50 to 100 feet long including. the lead-in to the set. When NG", ariat be connected together and the antenna lead-in connected to "An.
2. 22 The receiver will ubually work fairly satisfactority without a ground connection but a good ground connection is to be ht ghly recomerinded. many inctancea it vill increase the signal streneth and reduce noise. A an alternate, a cold water pipe, The lead-in from the ground chouid be of heavy wire, at least 12 or 14 , and ahould be connected to " $\mathbf{G}^{n}$ at the rear of the recelver.
2.23 Under apecial conditione when a doublet antenna may ba ueed, the 40 C orm trangrisgion line will then bo connected betwe on "M" and "Dr with the
ground connected to "GH. In this case nD" and gethere The doublet anterine performe excellently in a direotion at richt figles to ite length but only on the rather parror group of fequencies

2.31 Jopack the KB-22AI receiver and loun spoaker from the shipoing care and examine for poseible damage. There are no loose aecessorios other than
the instruction book.
2.32 Vake sure that the tuber arg firmly eated in their aocketa and the gria oap if in place on the $6 \mathrm{~K} \theta$ tubes
2.33 Fake sure that the power plug, P-3, on the end of the $24^{\prime \prime}$ yower cable is firmily inserted in the powar socket, p-2, at the rear of the chatsis for
2.34 Attech the 22SS soeaker to the two terminals marked "4.3" at the rear of the recelver.
Ordinarily the loud syeaker will be placed at the side of the receiver It if not defirable to place it on ton of the cabinet uline vibration fro it mideht possibly introduce microwhonic notses which would net etherwise
2.35 Connect the antemna lead-1n or antenna tranamiation inne in accordanc with 1 ns truetiona in Faragrank 2.2
2.06 Deternine the voltage of the $A C$ eource which is to operate the recelver by measurement with a voltmeter. Thep set the roltafe selector saitch, silic, to the nearest voitage indicated. This ewitch la located juat behind the tuming meter, Fil. It will bo necencary to loosen the eft screw with a
 the receiver and accidental contact with the tarminals at the rear of the tuning meter may cause ahock,

If no voltmeter it available to test the line voltage, in cases of $23 n$ wolt the roitage selector switch can be turned first to the $23 n$ volt poaition, the brilliancy of the pilot lamps oblerved, and then the swit oh tried in the consecutively lower positione untill the
brillifancy of the piliot lamps appesrs to be about normal. Care should
be exercised in operating the recelver witn this estimated berting. and at the first opportundty it should be checked with a voltmater, Anse, at the correct settiug when the receiver is turned off and the on again, the two neon lampe located just in front of the GXA, V-2,
 with a proper. vibrator power supoly, It can be operated from other bettery sources if

To set up and cperate the recelver from the vibrator power supply, proceed as
follows:
2.41 Proceed as directed in Paragraphs 2.31-3.35. Be sure the AC !ine cord is nct pluged into in AC outlet, (in case AO power ohould accidentally be applied.
2.42 Remove the power pug, $F-3$, in the ond of the $24^{n}$ pover cable from the from a typa cf vibrator pover of the chasels, if operation it i $: 0$ be at. 65 la from the same type of 5 prone yown socket with the ecrrect connections, simply plup P-3 into the aocket.
al though the bigh voitage required for the receiver is cnly 250 volte a dreputne restitor, R-35 (35CC ohms, 25 watts), is instaliod in the解 460 volte to the oorrect value.
2.43 If operation 1 a to be from other power supulies, make sure that the prope voltages aru applied to the proper. ping on $P-3$ ae thown in tho schomatic or leade from the power supply untt used to a 5 prone femple cablo sidicet such as an Anphenol TyEs WFisL, If the oucput is apyroxingtely 240 - ? polte at 66 kA, such as would be obtainad from the Kaar Type 647 X Vitrisor over Supply, then the realistor, R-35, ghould be shorted out by noldtiring the chasels at the rear near the fuse (Thie resiator is located under furnibhing voltages between 250 and 460 voltz, apast.) Por power axppliae proper retiatance value as celculated, or determined by experiment, way co connected gecross the terminals of $1-35$. The correot value should proVide approximately 250 volte at the low potential end of the resiator
when the receiver is operating.
2.44 connect the heavy battery leady from the pover utpply to the 6 volt battery the $\operatorname{Hip}$ lead to the poaltive ( + ) and the BLACA lead to the negative ( - )
2.45 Whan operating from a battery power nource, the operation of the receive is the same as before except that the ewitch, S-1, on the Volume Control does nct now turn the receiver off and ont. To turn the receiver off, it battory necessary to ramova ons of the battery leade from the atorace in one of the battery leads if desired.
 radio communication system. When the transmitter has break-in facilities, it is Oniy necessary to run wires to the two BReAk-IN terminale on the rear of the chasbs mitter ts turneywill be silenced while transmivting will autcmatically be turned on, and the recelver is operated from ite internal AC power
 In operation it desifed, it will be uecessary to provide for breaking the hif broak roltage expily laad by other mane, such ai by a speotal relay operated by the
tranamitter,

## 3. GEMEATNG INSTEUCTICNS

3.1 The various eontrols for operatine the kr-2sat recetver are locat:a across the Cortom of the panil and are aporepriately marked. The main tuning kncb 1 s lecated in the center of the panil just underncath the Vernier dial. To put the Xe-23AT receiver into operation, proceed ad follews.
3.11 PIne the ine cord into a source of 10 power an cutilned in Paragraph 2.3 or connect for battery cparation with an external pewer supply as per Paracrayh 2.4.
3.12 If operating from an AC source, the receiver in turned on by rotating the Volje control fram its "OFF" poation to the right. A click will be felt lieht up. It will take 30 seconda or so for the tube te heat up. If overatin froma o voit stcraee battery, the recetver is turned off and on by disconnecting on of the battery leads as deseribed in Paragraph 2.45.
3.13 Set the SELECRCR switch on position "A" for recolving brcadcast stationt, as they are usually the easiest to receive initially and will andile cie to beccue accuatered to the cperation of the set. In remcte locatior. $1 t$ ray ewitch slould be set on position " $\mathrm{CH}^{\prime}$ and short wave broadcast atations tuned in instead.
3.14 The E.F. GAIs control should be turned completely to the right (clockwibe) as far as it will go to position "lC".
3.15 The squefor control shouid be turned off by rotatine it as far as it will go to the right (elockwse) until the switch snape in the orF" positicn.
3.16 The AUTO:ATIC NOISE LIMITER, A.N.L., and BEAT FREQUNCY OSCILLATCR, B.F.O.

3.17 advance the VoLuns control to the right to a pcint where background ncise is heard. In quitet locations it may be deairable to turn the VCLMME control full on, and when a station is turned to tco loudly, reduce it to the desirad volume level.
3. 18 Fotate the main tuning knob until a falrly strong station is heard. The operatcr should then familiarize himbelf with the operation of each of the varicus controls in turn. Tune for maximum reading on Tuning Meter.
3.2 The function of each of the controls in herewith explained.
3.21 E.F. GatN CONIFOL: This control adjusts the senstitivity of the receiver and is used when the signal strength of a powerful nearby station is too ereat and reception is distorted. Jormally, however, with the auroinilo VOLUTE CONIROL (A.V.C.) "ON", there will be very little use for this control when receivin. voice and it ia uavally left turned completely to the right,

 be necessary to reduce the stations wil overhoad the recelver and io best resulte. The Tuning meter operates only when the A.V.C, is turned on.


 stlence the reveiver except when a si gaal ta actually heine recelvedo Its use is perticulariy adspted to twe-way ecmmundcation rork where the Xe-23at may be standing by and where a considerable amcunt cf background noiae vould be pressnt when no station is being received. The aquelch circuit allcws the receiver to be actually incperative unttil the ataticn to ohich it is tuned comos ca the alr, when it is autcmatically turned on. By adjusting,
 clockwiè) it ickes a etronger and etronger pignal to trip the squaleh circuit. For inetarco, in position "8" a reqennatiy ebrole gigand wil operate the receiver. While in position " 2 " is wuluà take a powerful tractmitter located just a few blocks away to operate it and any weaker etation on the same frequency would not then come in.
To properly set the SQuilich for a given condition, tune in the atatic: it 14 dsaired to recefve in tha ordinary manner vinie it is trantmitine. Whe. When it eqees off the alr. turn the Squxica control knob to the left tris. whin the tranamitter again comes on the oir, it cen be hearde
ancther vay would be to turn the control knob to the left when the trans. mitter 18 cn the air until it fuet disappears; thes advance the knob elightly to the right until the ataticn just ecunds normel, but ne further, This latter mathed is satisfactory for cicse-ty stations, but for mory distant atations which are subject to fading; it ia possible that at nome other time of day the sienal would become weace than it wal when the contro was at and then might not trip the squmich cir uit.

To une the sQumbin control for a betwen-atation quieting device, it is only necessary to set the knob at the position where average atatic roise fust diseppeare when not tuned to a station. Then, when the set is tuned across the dial. only the stations atronger than the static neisee will cone in. This use of the contrul does not work too satisfactorily on the ahort vave buridg. as the ahort weve statione are urually subject to 10 much faning that it ia possible to tune right by them an thoy are fading and censequantly mise them altcgether.
 Vilims centrol. To turn the recelver "On", tura the control to the right dial iights go cut. The voins the left until the mateh clicke and the of the received signals. When operating the recelver with the ande. noff: best resulta will be obtained by advencing the Vivie control a iiftle furthar than normal and then reducing the volume to the desired level by turning the R.F. GaIN control to the left.
3.25 TONE CONTROL: The TONE control harves to reduce the intensity of the hielf addic-frequencteg which some listeners find desirable in absisting to renc Whatic or to make the tone quality "bassy. In the Ho position, tha sud music. Bud eapocinily vuic. vill be ruat matural. Nr the ereate日t

1ntelligibility of the speaking voice, this control should always be in the "HIGE" position. When in the "ION" position, gost of the treble tones are leat. Since electrical and atmospberte noises are more or less of a high pitch, there will be a marked reduction in backgrcund noise when the tont control is in the "Io:n position, but often this advantage is lost as the excessive "drumny" or "boony" tone of the voice is not clear and crisp. The eenter point provides a position hall way between the high and low. settings.
 (B.F.O.) is turnei on by 8napping the "B.F.O." awitch to lloN". The Reat racefver for producing a miniature radio transmitter built finto the carrien to create an audible tone or whistie. OW (code) signals are produced by virtually turning a transmittor off and on to make the dote and dashes. If it were not for the Beat Frequency oscillator, nothing could be heara but some thamping sounds an the tranamitter went off and on. by beating this cscillator with the tranemitter, a tone is produced which can be read as ecde. The pitch of the beat note bhould be adjusted by the FITCA CORTRCI Orituarily the receiver is properly tuned when, with the FITcH CCNIFOL in the center "O" positicn, the tone is so lew that it is inaudible. Then pition pitch resulte: The pitch selocted wil depas

When listemine to cole elgneals with the B.F.O. on, the A.V.C. switch ghould be CCFF and the volume controlled by turning the R.F. GAIN control to the left. The regular volume control can be left bet at a comfortable listentine leval.
3. 27 AUMOMATIC NOISE LIMITER: The AOTOMATIC NOISE LIKCTIBR (A.N.L.) is a devic For short-circuiting noised and interference which are stronger than the eignal being received. It werks best on nelaes of short duration auch as epark discbarge noisea and the like, It is operative when the A.N. I. switch is "ON". Since the device removes a portion of the sound coming tircugh tha receiver, there will be a certain amount of distortion, , wgat aignal.
 will then tond to be clearer.
STANDBY-RACEIVE SHITCE: Locatad at the center of the designation plate is the SIANEBY-REMFIVE Bwitch. This witch mayt always be in the "ROCEIVB position in order for the recelver-to operate. When the receivar is ueed in conjurction with a transmittor, it is deairable to turn the receiver cff while trangitting, leaving the tube still lit in order that it can be instantly. turned on without the unual delay in waiting for the tuben to variil up. This swtich is used for that pirpose.
At the rear of the receiver in abrak-IN connection which parallele this front pancl awitch. In using a trankmitter with break-in facilities, it front panel awitch. In using a transmitter nith is only necessary to run wres from these two Binak-id teranals to then choild be left in the "STaNBBY" position, and every time the transmitter is turned off the receiver will automatically he turned on. Complete Troc-Wey Paciotelaphore oommuication can be ourried on in this fashicn very sasily.
3.29 FHOMES: A phone gack is laceted on the front penel for uaing headphones When desired. Ordinary high impadence cryntal or magnetic phones can be used.
 40 oms anc $50 C$ Chms, Men uaing the Kodel $2 z S$ s geaker, counections shouind bo made to the $4 \mathrm{f}^{\prime \prime}$ torminela. For 500 chm output, connectyons shouid
made to the

## 4. Katmenang

4.1 The parta used in the Kr-zzat Receiver are of more than adfquete raing azd the. maintemance required ordinarily will be limited to the occagfonal cienking of the tubes.
4.2 If the receiver in uaed in extremely dirty and dusty loostions, it will be adviabi to blow out the duet, preforably with compronged efr, evary fow ronich. If conpreseed air is not avcilabie, coft paint bruah may ba usod although care khouid set.tinge will not bs altered
4. $Z$ It may be debirable every few months to ell the gear train mechanian, 1 drop of lieht machine oil on the end of a tooth plek may be applied to the varicuc bearlager.

Qaymioy: Do not use toc much oil. Nne amall drop only should be applied at each point.

It also may be destrable to apply vaseline or other light grease to the geara thor selven. Hovever, in very dirty locations thits may not be desirable the groase would collect abrasive duat and ceare premature wear.
4.4 Should the failure of some part occur, regular servicing technique by one familiar With this vork 1 -s augesated, If parts replacemont be required, atandard perts of may be uaed without adveraely affecting the performanog of the equipment.

## 5. ALIGMANT FROCRDURT

5.] 觓NBRAL: Due to continual temperature chances, ageing of the parta and tubea, etc., it may be necessary to align the Em-2bat from time to time. Even under aevera operating conditions this should aeldam be necessary more than once a year. It is suggested that onily acme one entirely femiliar with the theory of allgnement of auper hetrodyne receivera be permitted to make these adjustments.

Ordinarily the alientent will need only to be "touched up", and no more than a rexy amall fraction of a tura of any of the adjusting acrewe should be required. Thia pre replaced, or through arly dificult. Hovever, if certain coila and conden biarn trouble may be exporioneed in getting it correctly allgned begala uniess cne is my thoroughly familiar with the correct procedura, as a number of apparent settinfo. images end the ilke mey prove to be confusing, particularly on the ht gher froquency bands "on and "D"

Yown Since indivitual receivery may vary alightly one from the other，the dial calibration may not be exact in all canea，and alleament should not be atfeypted merely for making the dial calibration exact as performance may be aacrificed．

To properly allgn the re－23an Beceiver，cartein apparatua will be required．
A very accurately calibrated cource of IF gignala is neceseary．This way be an ordinary reat ogcillator for alleping the．I．Fa Amplifler，provided that 455 K0 has For properly aliening the def ，gection on the varlous banda，a regular laboratory type Standard 51 gifel Genorator is recommended．The frequencies thet yill te required will be： $455,550,1,400,1,900$ and 4,400 KC；and $5: 5,14,16$ and 38 KC ． It is also desirable，but not esential，to have a serion of frequincien lying near the mid－pcint of each bend；guch an 9 CO and $3,0 C 0 \mathrm{XC}$ and 9 and 25 iC, It 14 also dearable to have proviaion for modulating the nignal with a 400 or $i, 000$ cycle tone．

In order to pisyally obaerve the correct alignment，an mectronfe Yultmeter or a regular rectifier type 4 CVOltmater is used．If nelther of these ia available， then the regular tuming meter，$k-1$ ，may be peded，but the amall scale will make accurate adjuatmant difficuit．

If the \＃lectronic．Voltmeter in ured，connect the poaitive（ 4 ）lead to the chessis and incert the negative（ - ）loed－prong in the＂LIIGMBMI JLCK＂，the red tip－jack． on the rear of the chasis．If the $A C$ Volnmeter is vaed，it is connected as an oupt Voltmeter or the Tintag Heter of the recelver and Off when uetne the to Yolt mater as an output meter．

It it preferacie to use an ingulated screw artver for adjuating the various trimert．The receiver nay be left in or removed froll the cabinet when aligning the R．$F_{\text {．}}$ section，but it must be removed when ollening the I．F．Amplifier．
 to the 455 an cause the dial calibration to be exceatively off or cause mit－tracking．

To allen the I．F．Ariplifier，proceed at followe
5．21 To gain accosa to the adjuting herawn，it vill be necessary to remove the ecolvar from the cabinet．Thie is done by removing the four terewe in the panel and then prililig the reoelver forward out of the cablnet

5．22 Connect the Loud apeaker，If the Electronic Voltmeter is used，turn the A．Vo C．awloh On．If the AC Voltmeter in ufed，turn the A．V．C．ewhtch Off，The Rof．cith control ahould be turned completely on to the right，
 position．Whe voluma control may be turned about 1 ，way on just so the ifgiad can be comfortably heard in order to give an aural indieation， partly for conventence and also so that one can get the＂feel＂of the receiver．The BeFo．avitch ahould be turned off．

5． 23 Remove the grid cap of the 6ximixer tube，F－2，and connect the Teat Oseinlator outpuit to the GKa grid and the chaielp．It may be most conven－ ient to cily the grounded ilde to the verlẹle condéneer frame．

5,24 Turn on the receivar and the Teot Cacillator and allow aeveral adrutes for the equipment to warm up and become stable．Since it is beat to aliga it is recompended to let it rum for an hour or two herore proceedin the alignment．

5．25 Apply the 455 XC algnal to the 6X8 tube．If the I．F．Ampitifier is coneiderably out of alifamint，auch as might be the case if a nev trano－ umed in ordar to force it，then a fairly streng $\mathrm{ifignel}_{\text {will }}$ have to be of the Teat Dicillator until sogh the gystem．Otherwas．net the level ilactronic Voltmeter or five volt or three voite are read on the on on the ac Voltmeter．
5.26 Then，vith a serev driver，adjuat the four sereve on the rear gide of the ．F．tranaformari．1－13 end 2－14，one at a timo until maximum roeding o the meter it obtainede if the alignment is oecarioned by the replacement and fine ocreve on thit one firat ard follow up yith the sinor edjustment of the trancformer that was not

After the adjutment appear：to be completed and the noter raading is a neximuty then go back over the adjusting criow in reverte order trying for a allghtly hieher reading．As the neter roadiag increane apprecially，Feduce the output of the teet Oscillator an necessery．
 at the name frequency is which the I．F．Amplifier is tuned．It adfustment is
 condition，proceed ae followat moint．Should it be requifed to adjust for this

5．31 If the $I_{0} F_{0}$ Amplifier hat juint been allgned，leave the eetup intect． 0 therwiap，set up in the reme manner as deserthed above，and apply the 455 XC olgral．It is preferable that the modulation be removed from the signel．

5．32 With the B．F．O．PITCH control at at the mid－point，0n＂，with a screw driver turn the adjuating screv of T－15 untiI the beat－iote between the Best frequency acillator and the Test Decillator becomes lover and lover in pitch end finally zero beats．
5．33 Oheck the adjuetment by turning the Ber，C．pitch eontril to the right or left and see that the pitch inoriases as the control is turned efther way．
5．34．Bemove the leads and replace the grid cap on the 6ke tube
 than that of allgening the Ior．Auplifler．It is sugeested that oare be exercied if only＂＂touching up＂the trimmars not to get the recelver too far out of align－ ment，at difficulty may be experienoed in getting it realigned correotly， particularly on Hands＂C＂and＂D＂．The positiong of the varlous trimming and padding adjusting mereve are shom in the Plan Tlew and Bottow Viov diagramis．
S．4l Connect the Signal Generator throuch a etandard dummy antenna to the infout terminals， 4 and $D$ ，be ours $D$ and $G$ are connected togethar），if a diumy antenna in nct availabie，a 40 ohin reaistor can be connected between the bot eide of the output of the Siginal geserator and the antiona terminal．A．

5.42 Set the various buitches and controls in the sato position as outitned is Paragraph No．5．22．
5.43 To align the A Bend， $500-2,600$ KC．proceed in the following order：
（1）Tharn the SELBCTOR awitch to＂$A^{\prime \prime}$ ．
（2）Apply the $1,400 \mathrm{KC}$ elgal and tune the dial to approximately $1,40 \mathrm{CKC}$ In other words，tune in the aignal to be aure titis getting through． If the sat is badly out of alignment，then a very etrong eignal may have to be uad and T－9 turned to locate it．
（3）If the diel doee not read exactiy 1,400 ，then turn it so that it does． VGRY GiREFULLY＂trim＂by turning the trimmar In 9 until the gignal ie again heard．Do not attemot to ton accurately tune by meane of the trimmer alone，ingtead silghtly rotate the tuning dial for the maximum reading on the meter after $\mathrm{m}-9$ has been approximately set． This movement chould be so elight that the pointer will gilil point to $1,40 \mathrm{C}$ ．
（4）Trin further by adjuating $2-5$ and $\mathbb{T}-1$ for maximum reading on the output meter，reducing the output from the Signal Generator if neceasary．
（5）Apply a signal of 550 KC and tune it in on the diad．
（6）Froceed to＂pad＂by adjusting the padding condenser， $0-13$ ，and the diai in connection with each other．There is somewhat of a＂trick＂ to doing this properly and one who is inexperieaced in pedding a ouperhetrodyne may find it difficult．

To properly pad，VRRY Cakrpully tura the adjusting screw of the padding condenser，$C-13$ ，to the right，clockrise． $1 / 8$ or $1 / 4$ turn． this should detune the receiver slishtly．Then resune with the dial and oberve the reading on the output meter．

If the meter reading ti higher，it show the procedure is in the right direction．Then give $0-13$ another $1 / 8$ or $1 / 4$ turn and obeerve the reading again．Continue until the meter ceases to read higher， If one too many fractional turns is made and the meter atarts to read lower，then go back $1 / 8$ or $1 / 4$ turn an neceasery．

If，Inatead of the output meter reading higher when $C-13$ is turned $1 / 8$ or $1 / 4$ of a turn it reads lower，then，instead，turn it $1 / 8 \mathrm{cr}$ $1 / 4$ turn to the left，counter－clockwlse，and proceed aa above until tha meximum meter reading is riached．
（7）The recelver is now correctly padded on Bend 4 and if the intention was to＂touch up＂the adjustments only，no further alignment on Band 4 will be ne cessary．
However，if the receiver wal considerably out of line，then it may However，if the receiver was considerably out of line，then it may

If such is the case the pointer may be bent slightly until it reada correctly．This may make the pointer read incorrectly at $1,400 \mathrm{KC}$ ， and if bo，it will be aecessary to trim over again aa outlined in （3）and（4）above．
（8）If Bend A has required more edjustment than merely a＂touch up＂of the trimpers，then，regaraless of whether the dial reads 550 at 550 KC or not，the pedding procedure may have been enough to throw the trimmers out of alignment．This can be checked by returnine the trimmers out of alignment．This can be checked by returning
to $1,400 \mathrm{EC}$ ，and see if the dial still reads $1,4 \mathrm{cc}$ ．If it does not， repeat（3）．Even if it does，check the adjustments If it dond $\mathrm{T}-1$ not， If T－9 requires further adjustment then repeat the ontire triming in requirea further adjulment then repeat the entire triming the reault of further adjubtment in both canes is indiacernable．
（9）In cases of extreme misaligment it is poistbie to fadadertentiy turn T－9 an excessive amount to such a position that would cause the oscillator to oscillate at a frequency 455 ge lower thex the ignel
 performance of the receiver at and eround $I_{8} 4 C O K d$ will geem to be performance of the recelver at and eround ${ }^{2} 4 C 0$ Ki，will geem to be will pad just as it should．However，if this mistake is made，the set will not perform satisfactorily in the midale of the band，appearing insensitive or dead，and it may even whistle when tuning in etations．

4 quick check for thia $i s$ to attech a farryy long outside antenna to the entenne terminal．A，instead of the Sigral Generator，and tune the dial from 1,400 to 550 KC ．The noise in the center of the band around 9CD KC should be somewhat higher than at 55C KC and pessibly around 9 CO KC should be somewhat higher than at 55 C KC and pesaibly alitile lower than at $1,400 \mathrm{KO}$ ，but the set ehould sound definitel Signal Generatior，and the output ohould read as good as or better at 900 KC as at 550 ．

Should it be found that the eet is dead in the middle of a band，then apply 1.400 k 0 to the input as before and tune in the signal，then turn the trimmer of $T-9$ approximatily $1 / 4$ to $3 / 4$ turn in ei ther directicn until the signal is tuned in again with a new adjuatment． Then trim end pad several times as described above and again check

5.44 To elign the $B$ Bend，1，600－5，0C0 XC．
（1）Tirn the SETACTOR switch to poaition＂B＂．The Stgnal Generator and output meter are left connected as before．
（2）Proceed in the same manner as outilned in Paragraph 5.43 （3）to（9） above，but trimming at 4，400 xC and padding at 1,800 ．

On this higher frequency range it will be found that the trimming of m－20 is somewhat more critical than I－9 well on Rand 4 ，bat the padding with 0－14 is lessteritical．
(3) It will be noted that by properly trimming 1 -10, the dial can be made to read correctly at $4,4 C 0 \mathrm{KC}$, and $\mathrm{T}-6$ end $\mathrm{TL}-2$ cen be easily adjusted. However, the dail readine at $1,800 \mathrm{KC}$ is dependent upon the coils which are not adjustable, and it is possible that when the receiver is correctly padded on Bond $B$ thet the diel will not read exactily $1,80 \mathrm{C}$. If such should be the case tho pointer mey be bent reading of Band a and the 1,800 KC reading of Band B. Sometimes one reading of Band a and the 1,80 kC readine of Band B. Some may Wish to "aplit the difference" between the correct padang pe purposely his burg $f 1$ is correctly. If this is done, some performence will naturelly de gacrificed.
15.45 To align the 0 Band, 5-14 MC.
(2). Burn the SELSCTOR switch to "C" and proceed as before, using 14 kegacycles for trimming and 5.5 kegacycles for padaing.
(2) On'this higher frequency band it in extremely easy to incorrectly adjust the trimtin oscillator is lower in frequency then the signal, sa the two settinge of the trimmera fall so close together, end sometimes in merely "touching up" the edjustments, the wrong oscillator frequency may result. Therefore, it is most importent when aligning the $C$ Band to check the performance in the center of the band, around 8-9NC.

NOTH: Because of an inherent characteristic of the raceiver the sensitivity betwean 9.5 and 10 MC is somewhat less than over the rest of the range. This slightly "dead" apct is rather eharpiy
defined and should not be confused with a general lack of sensitivity over the midale portion of the bend which would be due to the trimmers being incorrectly get.

It will be found that the padding adjustment of $0-15$ will not re critical.
5.46 To allga the D Band, 16 - 42 MC.
(1) Iurn the SmLECIOR ewtch to " DH ".
(2) It is to ba noted that on the D Band only, the oscillator frequency is 455 KC Lower than the signal frequency, and the method of determining the correct setting is different from that used on the other bende.
(3) Apply a 38 wic gignal to the receiver, adjust the trimming condenser of Thi2 ind obtain the correct diel reading as before. Adjust m 8 and lou for maximum reading on the meter. It will be noted in this case that all the adjustmente are very, very critical. In adfusting mil it may be necessary to turn the trimmer a very amall emount to an estimated setfing, and then find the signal by tuning the dial, this adjustment is so critical.
(4) Apter T-12, T-8 and T-4 are adjusted, then check to see if the oscillator frequency is lower then the aignal frequency. To do this, find the imege by tuning the dial to approximately 30 No where the aignal should again be heard a little weaker than before: I is heard on 39 MC . the adjustment of 30 . However, if it should be heazi on 37 KC and not on 39 , the adjugtment is incorrect and 2-12 should be completely reset.
(5) It muat be pointed out that in trimming the $D$ Bend it is poratble to get false settinge. at a felse setting ell of the adjustments neom to proceed normally except that the receiver lacks sensitivity to proceed normally except that the receiver lack sensitivity
gemerally and the performence is very poor. If this condition is suapected, the 38 fic aignal should again be applied only poseibly
 the $3 \in$ vic algnal can be located with an entirely different et of adjuatmentig. Then procead to carry through the trimming procedure from the beginning.
(6) There is no pedding adjustment for the $D$ Bend. Instead, the turna on the oscillator coll are moved back and forth to change the inductance, which accomplishes the same reault.

It is suggested that no attempt be made to pad the D Fand undora touch-up procedure. Only if one of the D Band colla has been roplaced ahomid this adjustment be attempted. The reaults of padiling will vary from set to eet but, in general, if one of the coils has boen replaced it is suggeated that en attempt be made to move the turns on it only, leaving tho other two alone.
(7) The general pedding procedure is, much the same as that uaed with a padding condenser. $\triangle 16 \mathrm{kC}$ signal is applied, the output meter raading observed at before, and one of the turnt of heavy wire on Th12 moved backwarda or forwarda by puanting with a corew driver. Follow the stgnal by retuning the dial and obeerving if the output has gone up or gone down, repeating or reveraing the procedure 4 a necessary. After the corract point has been foum, it will be necessary to retrim, much more so in this case than when aliening Bands A, B or $O_{4}$ Then, repad and retrim, repad and retrim as many times as necessary until the performance seems satisfectory, It is not uncommon to have to repeat as many as ten time before atiafactory performence is achieved.
(8) When the best pedding seems to have been obtained, then heavy wire of the secondery of T-4 may be moved back end forth to try and better the reaults. It will seldom be necessary to adjust ti-8,
The final check mey be made at 25 kC in the center of the bend. Ordinarily the sensitivity of the set at 25 MC will be greater than at 38 or 16 NO .
(9) Apply a little Duco Cement, or equivalent, to the turna of wire thet have been inoved in order jo gecure them in place.
5.47 Remove the meter and Signal Generator and replace the set in the cabinet.

EARTS_LST
KANR TYPE KE-23AR COWWNICNTICNS REGEIVER
chrcutt
Sympot
-T Trimming condensers, 12 units
7-45 minf. variable caramic.
OnS-2
w mounted ecross secondarien of R1 to R-12.

C-1A Antema coil agcondery
Rear section, 3 gang variable $23 \quad$ RC
air condenser, 442 mmit.
air condenser, 442 mat.
(Iffective cepacity.)
Q-1B E.T. coil secondary tuning.
Center section, 3 geng varizble alr condenter.

C-10. Oecillator grid coil tuning. Front section, 3 gang
442 mmf. (Dffective capacity.)

O-3 Compenatine capacitance for seccaiary of 14.4.
o-4 Gompenasting capacitance for secondary of T-8.
O. 8 H1gh frequency coupling for ${ }^{2}-8$.
a-6 Tucing condenier for
compenaeting coil of Tw.
Q-7 $\quad$ - 2 oscillator grid.
C-8 V-5 diode, Rof. filter.
c-9 Tuning condonser for Tw-15,
0-10 $\quad-7$ grid.
O-1i $\quad \forall-5$ diode, E. $\mathrm{H}_{0}$ by-pass.
O-13 Lov frequency tickler tuning of 1-12.
$213 \quad 4$ Band oscillator padding cordenser.
 Two 10 mmr . mica in geriem. 5R5Q1 on
25 mmf. ceremic, 40 CV . DC. N-75लx-2s I

Seme as Cm3.
50 mmf . ceramic, 400 V. IC. $\mathrm{N}-76 \mathrm{Cz} \mathrm{sc}$
Same es C-5.
100 mmf . ceramic, 400 V. IG. H-75NL-10C II
Same es c-7.
Same an 0-7.
Same ea c-7.
250 mmf. ceramic, 400 V. De. $\quad 750 \mathrm{O}-250 \mathrm{I}$
150 mak. mice, 50C V. no. If $\quad$ ke
$250-525$ mat.; mica
compreasions

| Circuit Symbol | Functicn | Cescrintion | Type | Mfer. | circust Symbol | Function | Lescription | Tyoe | Nficr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0-35$ | Coupling V-8 plate ta phones. | Same as C-34. |  |  | R-8 | V-6 plate* | Same as Rm5. |  |  |
| C-36 | Vu4 plate by-pass. | $.05 \text { mfd., } 600 \text { F. } D C_{4}$ movided peper. | 345-22 | M0 | R-9 | V-8 grid leak. | Same as R-5. |  |  |
| c-37 | Tone cantrol. | . CD mfd., 60 C Y. DC. moulded paper. | 2PW-5639 | SCL | P-10 | Stabilizing resistance for「-l2 oscillator coil. | $50 \mathrm{hm}, 1 / 2 \mathrm{~W}_{*}$, insulated carbon. | 504 | m |
| $0 \sim 38$ | F-8 cathode by-pass. | $10 \mathrm{mfd},. 25 \mathrm{~V}, \mathrm{DC}$. tubular electrolytic. | DR-102A | $\ldots$ | R-11 | $\begin{aligned} & \text { Supressor for Control Grid, } \\ & \text { V-2. } \end{aligned}$ | $3 \mathrm{Chm}, 1 / 2$ \%., inauiated carbon. | 504 | E |
| C-39 | マ+6 cethode by-pass. | $10 \mathrm{mfd} ., 50 \mathrm{~V} . \mathrm{DC} .$, tubular electrolytic. | BR-il ${ }^{\text {a }}$ | Col | Pr-12 | $\mathrm{V}-1$ and $\mathrm{Vm} \mathrm{S}^{\text {costhode, }}$ | $1500 \mathrm{hm}_{\mathrm{k}} 1 / 2 \mathrm{~W}_{0}$, insulated carbon. | 5 C 4 | E |
| $\mathrm{C}-40$ | Filter for V-2 plate ent screen supply voltage. | $12 \mathrm{mfd}_{\mathrm{A}} 450$ V. DC., tubular electrolytic. | BR-1245 | (D) | 8-13 | V-2 cathode, | $3000 \mathrm{hm}, 1 / 2 \mathrm{w}$. insulated carbon. | 504 | E |
| O-41 | Plate supply filter condenaers. One section at input of filter, other section at output. |  section aluminum cen type electrolytic. | UP-61-538 | CD | P -14 P-15 | Voltage divider* Meter compensating. | $600 \mathrm{hm}_{\bullet}$, $1 / 2 \mathrm{~W} .$, Insulated carbon. <br> $27,000 \mathrm{hm}, \mathrm{I} / 2 \mathrm{~W}$, insulated cerbon. | 604 $00-1$ | x 87 |
| C-42 | B.F.C. pitch control. 4. | 13 maf. variable air trimmer. | ITP-13 0 | 4SP | 2-16 | Voltage divider. | 10,000 $0 \mathrm{hm}, 1 / 2 \mathrm{~W} .$, insulated carbon. | 5C4. | $\underline{I}$ |
| C-43 | Phase correction capacitance for 0 Bent. | Two loope of wire around grid bue of T-7. |  |  | R-17 | R.F. filter from diode detector, $\mathrm{V}-5$, | $25,000 \mathrm{Ohm}, 1 / 2 \mathrm{~W}$, insuleted cerbon. | 5 C 4 | II |
| 6-44 | B.F.O. coupling, Vm to V-5, | $11 / 2$ loops of wire around diode plate lead of 1 -14. |  |  | F-18 | Vm7 grid leak. | Same as R-17. |  |  |
| B-1. | R.F. Gain Control. | 1,000 Ohm wire wound verlable resiator. Combined With meter switch SW-9. | x-2015 | CTT | I-19 | V-2 oscillator gria leak, | $50,0000 \mathrm{hm}, 1 / 2 \mathrm{~W}$., insulated carbon. | 504 | \# |
| 1-2 | Volume Control. | 250,000 Ohm potentiometer. Combined with power switch SW | HC-8586 | SI | I-20 | Audio droppine for A.N.L. tiabe, Y-4. | 100,060 $0 \mathrm{hm}, \mathrm{I} / 2 \mathrm{~W} .$, insulated çarbon. | 5 C 4 | $\pi$ |
|  |  |  |  |  | 2-21 | Audio dropping for i.N.L. tube, V-4. | 250, 000 0hm, 1/2 W., insulated carbon. | 5C4 | I |
| R-3 | Squelch control. | I Megohm potentiomater. Combined with SW -2. | W0-8585 | ST | R-22 | V-4 plate filter. | 1 Megohm, $1 / \kappa$ W., Insulated carbon. | 504 | \% |
| R-4 | Nitter Zero-Set Control. | 1500 Ohm potentiometer. | WC-8975 |  | B-23 | Y-6 grid leate | Seme es |  |  |
| R-5 | A.V.C. filter, V-3. grià return. | $500,000 \text { onm, } 1 / 4 \mathrm{~W} .$ <br> insulated carbon. | $\mathrm{CX-1} / 2$ | ST | 5-24 | A.V.C. filter. | 2 Niegohm, $1 / 2 W_{0}$, tngulated cerbon. | 504 | E |
| $\begin{aligned} & \text { B-6 } \\ & \text { R-7 } \end{aligned}$ | V-2 grid return inoletion. <br> Squelch dropping. | Stme as R-5. <br> Same pas R-5. |  |  | F-25 | Protective load across 4 Chm winding of $1-16$. | 10 On, 1 W., ingulated carbon. | 518 | $\pm$ |




